TY - JOUR
T1 - Rheological and thermal characteristics of a two phase hydrogel system for potential wound healing applications
AU - Smith, Thomas J.
AU - Kennedy, James E.
AU - Higginbotham, Clement L.
PY - 2010/6
Y1 - 2010/6
N2 - Hydrogels fabricated from single polymers have been extensively investigated for wound healing applications. However, in many cases a single polymer cannot meet divergent demands in terms of both properties and performance. In this work, a two phase hydrogel was prepared by physically imbedding a xerogel in the core of a freeze thawed hydrogel. The outer hydrogel was prepared by freeze thawing poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) while the xerogels were prepared by UV polymerisation of 1-vinyl-2-pyrrolidinone (NVP). The rheological results indicated that the two phase hydrogels over a period of 2 weeks formed a strong interface and demonstrated greater physical strength. This suggested that the inner gel containing PVP diffused into the PVA/PAA hydrogel, which in turn increased hydrogen bonding, resulting in the overall increase in the stiffness of the gel. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirmed hydrogen bonding had occurred between the constituents of the two phase hydrogels. Thermal analysis suggested that T g of each of the samples was above 80 °C, which indicated no impact on the behaviour of the gel at body temperature, but did however, give an indication of the stiffness of the dry polymer.
AB - Hydrogels fabricated from single polymers have been extensively investigated for wound healing applications. However, in many cases a single polymer cannot meet divergent demands in terms of both properties and performance. In this work, a two phase hydrogel was prepared by physically imbedding a xerogel in the core of a freeze thawed hydrogel. The outer hydrogel was prepared by freeze thawing poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) while the xerogels were prepared by UV polymerisation of 1-vinyl-2-pyrrolidinone (NVP). The rheological results indicated that the two phase hydrogels over a period of 2 weeks formed a strong interface and demonstrated greater physical strength. This suggested that the inner gel containing PVP diffused into the PVA/PAA hydrogel, which in turn increased hydrogen bonding, resulting in the overall increase in the stiffness of the gel. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) confirmed hydrogen bonding had occurred between the constituents of the two phase hydrogels. Thermal analysis suggested that T g of each of the samples was above 80 °C, which indicated no impact on the behaviour of the gel at body temperature, but did however, give an indication of the stiffness of the dry polymer.
UR - http://www.scopus.com/inward/record.url?scp=77951665491&partnerID=8YFLogxK
U2 - 10.1007/s10853-010-4278-x
DO - 10.1007/s10853-010-4278-x
M3 - Article
AN - SCOPUS:77951665491
SN - 0022-2461
VL - 45
SP - 2884
EP - 2891
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 11
ER -