Abstract
Two aspects of vanadium flow batteries are reviewed: electrochemical kinetics on carbon electrodes and positive electrolyte stability. There is poor agreement between reported values of kinetic parameters; however, most authors report that kinetic rates are faster for VIV/VV than for VII/VIII. Cycling the electrode potential increases the rates of both reactions initially due to roughening but when no further roughening is observed, the VII/VIII and VIV/VV reactions are affected oppositely by the pretreatment potential. Anodic pretreatment activates the electrode for the VII/VIII reaction, and deactivates it for VIV/VV. Three states of the carbon surface are suggested: reduced and oxidized states R and O, respectively, both with low electrocatalytic activity, and an intermediate state M with higher activity. The role of surface functional groups and the mechanisms of electron transfer for the VII/VIII and VIV/VV reactions are still not well understood. The induction time for precipitation of V2O5 from positive electrolytes decreases with temperature, showing an Arrhenius-type dependence with an activation energy of 1.79 eV in agreement with DFT calculations based on a VO(OH)3 intermediate. It also decreases exponentially with increasing VV concentration and increases exponentially with increasing sulphate concentration. Both arsenate and phosphate are effective additives for improving thermal stability.
Original language | English |
---|---|
Article number | 030504 |
Journal | Journal of the Electrochemical Society |
Volume | 170 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2023 |