TY - JOUR
T1 - Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics
AU - McAdam, Blaithín
AU - Fournet, Margaret Brennan
AU - McDonald, Paul
AU - Mojicevic, Marija
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/12
Y1 - 2020/12
N2 - Plastic pollution is fueling the grave environmental threats currently facing humans, the animal kingdom, and the planet. The pursuit of renewable resourced biodegradable materials commenced in the 1970s with the need for carbon neutral fully sustainable products driving important progress in recent years. The development of bioplastic materials is highlighted as imperative to the solutions to our global environment challenges and to the restoration of the wellbeing of our planet. Bio-based plastics are becoming increasingly sustainable and are expected to substitute fossil-based plastics. Bioplastics currently include both, nondegradable and biodegradable compositions, depending on factors including the origins of production and post-use management and conditions. Among the most promising materials being developed and evaluated is polyhydroxybutyrate (PHB), a microbial bioprocessed polyester belonging to the polyhydroxyalkanoate (PHA) family. This biocompatible and non-toxic polymer is biosynthesized and accumulated by a number of specialized bacterial strains. The favorable mechanical properties and amenability to biodegradation when exposed to certain active biological environments, earmark PHB as a high potential replacement for petrochemical based polymers such as ubiquitous high density polyethylene (HDPE). To date, high production costs, minimal yields, production technology complexities, and difficulties relating to downstream processing are limiting factors for its progression and expansion in the marketplace. This review examines the chemical, mechanical, thermal, and crystalline characteristics of PHB, as well as various fermentation processing factors which influence the properties of PHB materials.
AB - Plastic pollution is fueling the grave environmental threats currently facing humans, the animal kingdom, and the planet. The pursuit of renewable resourced biodegradable materials commenced in the 1970s with the need for carbon neutral fully sustainable products driving important progress in recent years. The development of bioplastic materials is highlighted as imperative to the solutions to our global environment challenges and to the restoration of the wellbeing of our planet. Bio-based plastics are becoming increasingly sustainable and are expected to substitute fossil-based plastics. Bioplastics currently include both, nondegradable and biodegradable compositions, depending on factors including the origins of production and post-use management and conditions. Among the most promising materials being developed and evaluated is polyhydroxybutyrate (PHB), a microbial bioprocessed polyester belonging to the polyhydroxyalkanoate (PHA) family. This biocompatible and non-toxic polymer is biosynthesized and accumulated by a number of specialized bacterial strains. The favorable mechanical properties and amenability to biodegradation when exposed to certain active biological environments, earmark PHB as a high potential replacement for petrochemical based polymers such as ubiquitous high density polyethylene (HDPE). To date, high production costs, minimal yields, production technology complexities, and difficulties relating to downstream processing are limiting factors for its progression and expansion in the marketplace. This review examines the chemical, mechanical, thermal, and crystalline characteristics of PHB, as well as various fermentation processing factors which influence the properties of PHB materials.
KW - Bacterial fermentation
KW - Biodegradable
KW - Biosynthesis
KW - Biosynthetic polymers
KW - PHB
KW - Polyhydroxyalkanoates
UR - http://www.scopus.com/inward/record.url?scp=85097309192&partnerID=8YFLogxK
U2 - 10.3390/polym12122908
DO - 10.3390/polym12122908
M3 - Review article
AN - SCOPUS:85097309192
SN - 2073-4360
VL - 12
SP - 1
EP - 20
JO - Polymers
JF - Polymers
IS - 12
M1 - 2908
ER -