MultiROS: ROS-Based Robot Simulation Environment for Concurrent Deep Reinforcement Learning

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

On the journey of true autonomous robotics, applying deep reinforcement learning (DRL) techniques to solve complex robotics tasks has been a growing interest in academics and the industry. Currently, numerous simulation frameworks exist for evaluating DRL algorithms with robots, and they usually come with prebuilt tasks or provide tools to create custom environments. Among these, one of the highly sought approaches is using Robot Operating System (ROS) based DRL frameworks for simulation and deployment in the real world. The current ROS-based DRL simulation frameworks like openai_ros or Gym-gazebo provide a framework for creating environments; however, they do not support training with vectorised environments for speeding up the training process and parallel simulations for testing and evaluating meta-learning, multi-task learning and transfer learning approaches. Therefore, we present MultiROS, a 3D robotic simulation framework with a collection of prebuilt environments for deep reinforcement learning (DRL) research to overcome these limitations. This package interfaces with the Gazebo robotic simulator using ROS and provides a modular structure to create ROS-based RL environments. Unlike the others, MultiROS provides support for training with multiple environments in parallel and simultaneously accessing data from each simulation. Furthermore, since MultiROS uses the popular OpenAI Gym interface, it is compatible with most OpenAI Gym based reinforcement learning algorithms that use third-party python frameworks.

Original languageEnglish
Title of host publication2022 IEEE 18th International Conference on Automation Science and Engineering, CASE 2022
PublisherIEEE Computer Society
Pages1098-1103
Number of pages6
ISBN (Electronic)9781665490429
DOIs
Publication statusPublished - 2022
Event18th IEEE International Conference on Automation Science and Engineering, CASE 2022 - Mexico City, Mexico
Duration: 20 Aug 202224 Aug 2022

Publication series

NameIEEE International Conference on Automation Science and Engineering
Volume2022-August
ISSN (Print)2161-8070
ISSN (Electronic)2161-8089

Conference

Conference18th IEEE International Conference on Automation Science and Engineering, CASE 2022
Country/TerritoryMexico
CityMexico City
Period20/08/2224/08/22

Fingerprint

Dive into the research topics of 'MultiROS: ROS-Based Robot Simulation Environment for Concurrent Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this