TY - JOUR
T1 - Lithiophilic Nanowire Guided Li Deposition in Li Metal Batteries
AU - Abdul Ahad, Syed
AU - Bhattacharya, Shayon
AU - Kilian, Seamus
AU - Ottaviani, Michela
AU - Ryan, Kevin M.
AU - Kennedy, Tadhg
AU - Thompson, Damien
AU - Geaney, Hugh
N1 - Publisher Copyright:
© 2022 The Authors. Small published by Wiley-VCH GmbH.
PY - 2023/1/11
Y1 - 2023/1/11
N2 - Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li-ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build-up of dead Li in “hostless” Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li22Si5, Li22(Si0.5Ge0.5)5, and Li22Ge5 formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li22Ge5/Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm−2/1 mAh cm−2 for 1000 h and at 3 mA cm−2/3 mAh cm−2 for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li22Ge5 decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO4, and NMC811 cathodes, the CP-LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.
AB - Lithium (Li) metal batteries (LMBs) provide superior energy densities far beyond current Li-ion batteries (LIBs) but practical applications are hindered by uncontrolled dendrite formation and the build-up of dead Li in “hostless” Li metal anodes. To circumvent these issues, we created a 3D framework of a carbon paper (CP) substrate decorated with lithiophilic nanowires (silicon (Si), germanium (Ge), and SiGe alloy NWs) that provides a robust host for efficient stripping/plating of Li metal. The lithiophilic Li22Si5, Li22(Si0.5Ge0.5)5, and Li22Ge5 formed during rapid Li melt infiltration prevented the formation of dead Li and dendrites. Li22Ge5/Li covered CP hosts delivered the best performance, with the lowest overpotentials of 40 mV (three times lower than pristine Li) when cycled at 1 mA cm−2/1 mAh cm−2 for 1000 h and at 3 mA cm−2/3 mAh cm−2 for 500 h. Ex situ analysis confirmed the ability of the lithiophilic Li22Ge5 decorated samples to facilitate uniform Li deposition. When paired with sulfur, LiFePO4, and NMC811 cathodes, the CP-LiGe/Li anodes delivered 200 cycles with 82%, 93%, and 90% capacity retention, respectively. The discovery of the highly stable, lithiophilic NW decorated CP hosts is a promising route toward stable cycling LMBs and provides a new design motif for hosted Li metal anodes.
KW - carbon frameworks
KW - Li metal
KW - lithiophilic
KW - nanowires
UR - http://www.scopus.com/inward/record.url?scp=85142272234&partnerID=8YFLogxK
U2 - 10.1002/smll.202205142
DO - 10.1002/smll.202205142
M3 - Article
C2 - 36398602
AN - SCOPUS:85142272234
SN - 1613-6810
VL - 19
JO - Small
JF - Small
IS - 2
M1 - 2205142
ER -