TY - JOUR
T1 - In vitro antiplasmodial activity, LC-MS analysis, and molecular docking studies of bioactive compounds from Tetrapleura tetraptera (Fabaceae) fruits
AU - Hamidu, Sherif
AU - Adams, Latif
AU - Oduro, Patrick Kwabena
AU - Zoiku, Felix Kwame
AU - Aning, Abigail
AU - Ampem-Danso, Eunice
AU - Ampofo, Janet Abena
AU - Afiadenyo, Michael
AU - Moane, Siobhan
AU - Bennett, Michelle Mc Keon
AU - Kusi, Kwadwo Asamoah
AU - Yeboah, Dorcas Obiri
N1 - Publisher Copyright:
© 2023
PY - 2023/11
Y1 - 2023/11
N2 - Malaria continues to be a major public health concern, particularly for children and pregnant women in areas where the disease is endemic. Developing safe and efficient antimalarial therapies to fight the disease is essential. Medicinal plants represent a potential source for the development of new antimalarial drugs. Tetrapleura tetraptera is a plant native to West Africa and traditionally used to treat several diseases including Malaria. Here, we investigated the antiplasmodial activities of T. tetraptera fruit extracts against the chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfDD2) strains of Plasmodium falciparum in vitro using SYBR green assay. In addition, the antioxidant potential of the fruit extracts was also determined. LC-MS analysis was carried out to identify the bioactive compounds in the extracts. Molecular docking studies provide significant prima facie evidence of inhibition hence, to evaluate the potential inhibition of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a validated malaria drug target, the identified compounds were docked against PfDHODH. Strong antiplasmodial activities were demonstrated by the ethyl acetate and ethanolic extracts of T. tetraptera fruit, with IC50 values of 16.12 ± 0.04 µg/mL and 2.06 ± 0.02 µg/mL against the Pf3D7 strain, respectively. In the DPPH radical scavenging experiment, the ethanolic extract revealed considerable antioxidant activity with an EC50 value of 0.21 ± 0.82 mg/mL. Seven bioactive compounds were identified in the extract using LC-MS analysis. N-Methyl-1H-indole-3-propanamide (I), Tazolol (II), and Isopentyl salicylate (III) were identified as potential inhibitors of PfDHODH with high binding affinities ranging from -32.08 to -30.69 kcal/mol. The potential lead compounds also interacted with Gly181, Leu531, and Arg265, which are critical amino acid residues in the catalytic activity of PfDHODH. These findings support the traditional use of T. tetraptera fruit extracts for the treatment of malaria and as promising avenues for antimalarial drug development.
AB - Malaria continues to be a major public health concern, particularly for children and pregnant women in areas where the disease is endemic. Developing safe and efficient antimalarial therapies to fight the disease is essential. Medicinal plants represent a potential source for the development of new antimalarial drugs. Tetrapleura tetraptera is a plant native to West Africa and traditionally used to treat several diseases including Malaria. Here, we investigated the antiplasmodial activities of T. tetraptera fruit extracts against the chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfDD2) strains of Plasmodium falciparum in vitro using SYBR green assay. In addition, the antioxidant potential of the fruit extracts was also determined. LC-MS analysis was carried out to identify the bioactive compounds in the extracts. Molecular docking studies provide significant prima facie evidence of inhibition hence, to evaluate the potential inhibition of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a validated malaria drug target, the identified compounds were docked against PfDHODH. Strong antiplasmodial activities were demonstrated by the ethyl acetate and ethanolic extracts of T. tetraptera fruit, with IC50 values of 16.12 ± 0.04 µg/mL and 2.06 ± 0.02 µg/mL against the Pf3D7 strain, respectively. In the DPPH radical scavenging experiment, the ethanolic extract revealed considerable antioxidant activity with an EC50 value of 0.21 ± 0.82 mg/mL. Seven bioactive compounds were identified in the extract using LC-MS analysis. N-Methyl-1H-indole-3-propanamide (I), Tazolol (II), and Isopentyl salicylate (III) were identified as potential inhibitors of PfDHODH with high binding affinities ranging from -32.08 to -30.69 kcal/mol. The potential lead compounds also interacted with Gly181, Leu531, and Arg265, which are critical amino acid residues in the catalytic activity of PfDHODH. These findings support the traditional use of T. tetraptera fruit extracts for the treatment of malaria and as promising avenues for antimalarial drug development.
KW - Antimalarial activity
KW - Antioxidant
KW - Dihydroorotate dehydrogenase
KW - Malaria
KW - Molecular docking
UR - http://www.scopus.com/inward/record.url?scp=85174140385&partnerID=8YFLogxK
U2 - 10.1016/j.sciaf.2023.e01944
DO - 10.1016/j.sciaf.2023.e01944
M3 - Article
AN - SCOPUS:85174140385
SN - 2468-2276
VL - 22
JO - Scientific African
JF - Scientific African
M1 - e01944
ER -