Benchmarking Communicative Reinforcement Learning Frameworks on Multi-Robot Cooperative Tasks

Muhammad Naveed Abbas, Brian Lee, Yuansong Qiao, Paul Liston

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Industry 4.0 warehousing is characterised by autonomous multi-robot collaboration systems (MRSs) along with other technologies such as digital communication capabilities and the Internet of Things. These MRSs need to behave coherently for the efficient completion of the assigned cooperative tasks. Multi-agent reinforcement learning (MARL) frameworks are currently considered state-of-the-art to control the behaviour of autonomous MRSs. These MARL frameworks can be with learnable or predefined communication. Current works lack any worthwhile evaluation of communicative MARL frameworks on multi-robot cooperative tasks. This work empirically evaluates current state-of-the-art seminal learnable communicative MARL frameworks by comparing their performance against non-communicative MARL frameworks on multi-robot coop-erative tasks in the context of Industry 4.0 warehousing with the assumptions of partial observability and reward sparsity. The results demonstrate that communicative MARL frameworks outperform their counterparts by a fair margin in training (average returns between 11 and 6 against 8 and 4 for highest and lowest values respectively) and execution performances (average returns between 1.24 and 0.29 against 0.49 and 0.19 for highest and lowest values respectively). This leads to the conclusion that communicative MARL is better suited to multi-robot cooperative tasks under the above-mentioned assumptions.

Original languageEnglish
Title of host publicationProceedings - 22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023
EditorsM. Arif Wani, Mihai Boicu, Moamar Sayed-Mouchaweh, Pedro Henriques Abreu, Joao Gama
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages988-993
Number of pages6
ISBN (Electronic)9798350345346
ISBN (Print)9798350345346
DOIs
Publication statusPublished - 2023
Event22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023 - Jacksonville, United States
Duration: 15 Dec 202317 Dec 2023

Publication series

NameProceedings - 22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023

Conference

Conference22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023
Country/TerritoryUnited States
CityJacksonville
Period15/12/2317/12/23

Keywords

  • communicative
  • cooperative
  • multi-agent reinforcement learning
  • multi-robots
  • non-communicative
  • warehouse

Fingerprint

Dive into the research topics of 'Benchmarking Communicative Reinforcement Learning Frameworks on Multi-Robot Cooperative Tasks'. Together they form a unique fingerprint.

Cite this